Water scarcity: technology is not the problem – its decision making

Lian Lundy
Professor of Environmental Science
Urban Pollution Research Centre
Middlesex University, UK

4th Annual Water Efficiency Conference, 7-9th September 2016

Overview

- Global situation
- Water scarcity in Kazakhstan, Brazil and the UK
- Doing things differently
- Implementing change

Global current situation

- 9 countries possess 60% of the world's available fresh water supply
- Since 1900 >11 million people have died and >2 billion people have been affected by drought
- Groundwater is crucial for the livelihoods of 1.5 billion rural households in Africa and Asia
- Nearly all Middle East countries suffer from water scarcity
- No water no business:
 - ~35% of industrial water use in the USA and China relates to energy production
 - Production processes, chemical reactions, product components, waste disposal
- Transboundary water management is very challenging

Who uses freshwater?

Global situation – moving forwards

- More water will be needed to produce more food for 3 billion more people
- Improved lifestyles / changing diets require more water and more energy
- Water withdrawals predicted to increase by ~ 25% in developing countries
- Agricultural water consumption estimated to increase by ~19% by 2050
- A 60% increase in demand for energy over the next three decades
- Other economic sectors will continue to compete for water resources

Main river basins in Kazakhstan

Source: Water Resource Committee of the Republic of Kazakhstan

Current situation: Kazakhstan

- Water consumption: Agriculture (75%); industry (18%); domestic (7%)
- 75% population receive piped water (household or stand pipe; 30% losses)
- 50% of water pipelines in Astana do not meet quality standards
- Water use per capita: 206 l/d (Almaty); 10-16 l/d (North Kazakhstan and Zhambyl)
- In urban areas, 56-69% of wastewater collected; 10-85% is treated
- Water loss during irrigation: 65-70%

Transboundary water management

- Operation of the Toktogul Reservoir (Uzbekistan, Kyrgyzstan)
- Abstraction from the Irtysh and Ili rivers (China)

Drying up of the Aral sea - impacts

Latin-America: general context

- Population growth, expanded industrial activity, high irrigation demand
- Ten-fold increase in total water extraction over 20th century; grew by 76% from 1990-2004
- Glaciers are receding affecting water supply of ~ 30M people
- Droughts occur regularly e.g. Brazil 2002, 2003, 2010, 2012, 2013, 2014-2016

Brazil: current situation:

- 12% of the world's freshwater; semi-arid regions in the NE
- Water use: Agriculture (54%); domestic (25%); industry (17%)
- Average per capita use = 166 l/d
- Water supply coverage:
 - Urban = 97%
 - Rural = 85%;
 - Variations: 47% (N) and 69% (NE)
- Water distribution losses = 37%
- 48% domestic sewage collected of which 39% is treated

Droughts in Brazil

Rainfall (400-1500 mm/year): evapotranspiration (2,000-3,000 mm/year)

2012 and 2013 drought:

- Almost all rain-fed agriculture destroyed
- Majority of cattle died, were transferred or sold for a lower price
- Small family farmers in the semi-arid regions are most vulnerable lost ~
 95% of beans, maize and manioc crops

2014-2016 drought: Cantareira system, Sao Paulo

http://www.telegraph.co.uk/news/picturegalleries

Impacts?

- Water rationing in 93 cities
- 70% of Brazil's electricity is generated by hydropower
 - Energy rationing
 - Lights and internet cut for days residents and business
 - Blackouts (high demand for air conditioning)
- Chemical, beef and coffee manufacturers halting production
- Residents hoarding water led to an outbreak of dengue
- Poor affected most short of water for drinking, cooking and washing

UK: general context

- Rainfall: <700mm >3000mm
- UK climate trend towards milder winters and hotter summers
- Average per capita water use: 150 l/d
- Water distribution losses ~ 25%
- UK water companies:
 - supply around 16,600 MI/day of drinking water across the UK
 - currently a supply/demand surplus of ~2,000 MI/day,
 - modest deficits in some water resource zones

Use by sector

Licensed abstractions, England and Wales (%)

Public water supply, England and Wales (MI/day &%)

Magnitude of UK climate change impacts for various degrees of global warming

UK: predications moving forwards

Nationally the UK projected to be in deficit:

- 5 16% of total demand in the 2050s,
- 8 29% of the total demand time in the 2080s.

Difficult trade-offs between sectors

- Household water supply interruptions
- Crop production in parts of England and Scotland become unviable
- Reduced electric and hydroelectric power generation
- Business operations impacted
- Shrink—swell processes damage surface and buried infrastructure
- Saltwater intrusion risks to aquifers, farmland and habitats

Cascading infrastructure failures across interdependent networks

UK Climate Change Risk Assessment 2017 Evidence Report

Doing things differently (1): Sustainable urban drainage systems

- Treat stormwater as close as possible to its source
- Infiltration/detention followed by discharge at a controlled rate
- Jointly address stormwater control from water quantity, water quality and public amenity perspectives
- Used individually, in a treatment train or in combination with conventional piped systems

Types of SUDS

Benefits of green infrastructure

- Reduce surface runoff volumes
- Enhance surface water quality
- Mitigate urban heat island effect
- Enhance air quality
- Provide habitat
- Physical and mental health well-being

Doing things differently (2): Wastewater reuse

- 60/193 countries reuse wastewater for different purposes
- Agriculture (51 countries), municipal use (33 countries), groundwater recharge (26 countries)
- More common in regions with water scarcity e.g. Middle East and North Africa
- Water quantity, quality, reliability of supply and economic benefits

Wastewater reuse in the EU (Toci, 2016)

Wastewater Reuse in the EU

Agriculture (and groundwater)

Belgium

Cyprus

France Germany

Greece

Italy Malta

Portugal

Spain Sweden

Only groundwater Recharge

The Netherlands UK

Implementing change

We have the technology to:

- Reduce water consumption
- Reduce leakages
- Reuse wastewater in irrigation
- Reuse wastewater as a potable water source
- Many examples of industry reducing water use by 80-90%
- Multiple benefits of green infrastructure

Implementing change

We have the money

- Global GDP (2014) \$77.83 trillion
- U.S. advertising expenditure in 2014 = \$180.12 billion
- Global bottled water market 2015 = \$200.3 billion
- Bottled water market in the UK (2010 to 2015) = £1.43 billion
- Manchester United resigned Paul Pogba £89 million

Creative partnerships across sectors

- More ambitious, strategic and co-ordinated action by water users to significantly reduce demand
- Long lead times involved requires longer-term planning
- New, stronger or different government policies or implementation activities – learn from transboundary water management practices?
- Municipalities/businesses prioritise cost-effective water management
- The scientific community
 - to develop technologies to get the most value out of the water cycle
 - to improve understanding of water resources and their cross-sector management